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A Global and Hemispheric Analysis of the
Relationship between Environmental Sustainability
and Economic Inequality

Mairene Tobén Ospino’, Humberto Marbello-Pefia™, and David Sierra-
Porta ™"

Abstract: In this article, we examine how income distribution and energy use
shaped per-capita CO; emissions between 1965 and 2022 at three spatial scales—
world, northern hemisphere, and southern hemisphere. After re-scaling all the
variables to the unit interval, we first estimate separate ordinary least squares
regressions and then re-estimate the three equations jointly with Zellner’s seemingly
unrelated regression, a step warranted by the substantial contemporaneous error
correlation. Across both emission channels—aggregate CO; and the land-use
component—energy consumption emerges as the most consistent and statistically
powerful predictor. Inequality effects are heterogeneous. The Gini coefficient
amplifies emissions in the southern hemisphere and in the global system but is
negligible in the northern fossil-fuel equation, while the Palma ratio reduces land-
use emissions once overall inequality is held constant. Temperature anomalies
display a further asymmetry, reducing land-use emissions everywhere, yet
coinciding with higher fossil-fuel emissions in the south. Joint estimation raises the
system-wide goodness of fit to 0.97 for land-use emissions and 0.99 for total
emissions and yields more precise coefficients than the separate regressions. The
results indicate that decarbonizing energy systems is a universal mitigation priority,
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whereas distributional reforms and land-governance measures are likely to deliver
the greatest additional benefits in the southern hemisphere.

Keywords: CO; Emissions, Economic Inequality, Energy Consumption,
Temperature Anomaly, Regional Analysis.

1. INTRODUCTION

Global climate change, primarily driven by anthropogenic CO, emissions,
has become a major international concern (Wang e 4/ 2015; Wang and
Feng 2017). A large literature links emissions to energy systems and macro-
structural drivers—including energy mix and energy intensity (Wang ef al.
2015; Wang and Feng 2017), industrial structure (Romero and Gramkow
2021; Wang, Kuang, and Huang 2011), economic activity and population
scale (Le Quété er al 2019; Oreggioni er al. 2021), and financial/spatial
structures shaping carbon intensity (Yan ez o/ 2022). While rising incomes
and populations are often associated with higher emissions, they are neither
necessary nor sufficient conditions; energy structures and emission
intensities frequently emerge as crucial determinants. The relationship
between warming and human activities is complex, encompassing energy
consumption, human development, and economic activity; yet their relative
importance, particularly for less developed countries, continues to be
debated (Hao 2022). In recent years, research has increasingly linked socio-
economic inequality to environmental outcomes, raising questions about
whether—and through which channels—income distribution determines
emission intensity (Khan, Yahong, and Zeeshan 2022).

Beyond cross-country averages, who emits within a country matters. Recent
assessments have documented that upper-income groups account for a
growing fraction of emissions—including in emerging economies—and that
within-country emissions inequality now rivals or exceeds between-country
gaps (Chancel, Bothe, and Voituriez 2023; Chancel ¢t ol 2022; UNEP
2023). This further motivates the use of a lens that can distinguish structural
north—south patterns while remaining sensitive to distributional dynamics.
However, two gaps remain. First, most of the evidence is national or sub-
national—informative for within-country dynamics but not designed to
reveal hemispheric asymmetries that may arise from systematic differences
in industrial composition, energy intensity, technological diffusion, and
policy capacity (Dong, Dou, and Jiang 2022). Second, cross-country
comparisons typically rely on a single inequality index—most often Gini—
which is less sensitive to tail dynamics than the Palma ratio. Consequently,
it is unclear whether conclusions hinge on the chosen inequality metric and
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whether the inequality—emissions nexus is symmetric across hemispheres
over multiple decades.

This article addresses these gaps with a long-horizon global and
hemispheric assessment of the association between environmental pressure
and income distribution. We link CO, emissions per capita (including land-
use change emissions) and primary-energy use per capita over the years
19652022 with two complementary inequality measures—Gini (overall
dispersion, 0-1) and Palma (top 10% over bottom 40%)—using
transparent, population-weighted aggregation from country data. Our
analysis is guided by three questions: (1) How are inequality and
environmental pressure related globally and by hemisphere over the long
run? (2) Do these relationships differ meaningfully between the northern
and southern hemispheres? (3) Are the main patterns robust to using Gini
versus Palma as the inequality proxy?

A rich, theoretical, and empirical literature motivates these questions.
Greater inequality can amplify emissions via luxurious consumption by
high-income groups and consumption/behavioural channels in developing
economies (Ahmad, Muslija, and Satrovic 2021; Pata et a/ 2022), the
political economy of regulation, and unequal access to land and credit,
which influences land-use change; conversely, concentrated capital and
faster diffusion of clean technologies could mitigate emissions in some
settings (Duarte, Miranda-Buetas, and Sarasa 2021; Munasinghe 1999; Ray,
Baland, and Dagnelie 2007; Sovacool ez al. 2022; Sinha ez al. 2023; Wang, Li,
and Li 2023; Wang, Uddin, and Gong 2021). Empirically, results are mixed:
Some studies report negative or non-linear links, or neutrality, underscoring
the role of context and timing (Ghazouani and Beldi 2022; Mehmood e¢f a/.
2022; Ngankam 2024; Guo, ¢t al. 2022). Over the long run, inequality often
appears intertwined with emissions through macro-energy channels
(Santillan Salgado, Valencia-Herrera, and Venegas-Martinez 2020).

We bring these strands together in a single comparative framework
spanning nearly six decades and three aggregates—global, northern
hemisphere, southern hemisphere—and include the global temperature
anomaly to characterize the climatic backdrop. Missing values are handled
transparently via an iterative machine-learning imputation (Random Forest,
500 trees; internal gaps only), after which country series are aggregated
using population weights, with equatorial countries assigned based on
majority landmass. We anticipate that energy use per capita will be the most
pervasive correlate of emissions across all aggregates. Inequality here
signifies hemispheric asymmetries—which are stronger and sign-
differentiated in the south—and these patterns are robust to using either
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Gini or Palma. Because many series trend over time, we assess unit roots
(using the augmented Dickey—Fuller [ADF] test and the Kwiatkowski—
Phillips—Schmidt-Shin [KPSS] test) and co-integration (Johansen, Engle—
Granger) and estimate error correction models (ECMs) or first-difference
models; the core associations persist once common trends are accounted
for.

Throughout, coefficients are read as conditional associations rather than
causal effects. The global average temperature anomaly is included as an
ancillary control—it can influence energy demand and land-use practices in
the short run—but we do not assigh a causal interpretation to the
coefficient of this factor, given its simultaneity with cumulative emissions.
The hemispheric lens is informative for large-scale patterns but may mask
within-hemisphere heterogeneity. Future work could deploy country or sub-
national panel designs with stronger identification to unpack mechanisms.
Taken together, our analysis clarifies where inequality appears most
associated with emissions, and where energy system transformation is the
dominant lever for mitigation.

Finally, to situate our contribution, Table 1 synthesizes representative
studies on inequality and emissions—summarizing regions, periods,
outcome variables, inequality metrics, and methods alongside headline
tindings. This comparison clarifies how our hemispheric, dual-metric (Gini
and Palma), long-horizon approach—combined with machine learning—
based imputation and co-integration-centred estimation—extends the
literature.

2. DATA

This study uses a dataset from 1965 to 2022 that examines the relationships
between environmental indicators and economic inequality on the global,
northern hemisphere, and southern hemisphere scales. The variables
analysed include per-capita GHG emissions, annual CO; emissions from
land-use change per capita, energy use per person, the Gini coefficient, the
Palma ratio, the Human Development Index (HDI), and the global average
temperature anomaly.

Per-capita GHG emissions are calculated by combining CO,, CH4, and
N2O from all sources, including land-use change, measured in tonnes of
COz equivalent over a 100-year timescale. The data are sourced from the
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Table 1. Selected Studies on Inequality and Emissions: Regions, Methods, Key Findings, and How the Present Study

Advances the Field

Study Regions/  Petiod Scale Outcomes Inequality Methods  Key findings How the
coverage metric(s) present  study
advances the
field
Le Quéré 18 2005-2015 National, CO, — Decom- CO, reduction Adds
et al.  developed multi- emissions position linked to efficiency —hemispheric
(2019) economies country of drivers improvements and comparison;
fuel switching (plus tests inequality
structural  changes channels jointly
and  consumption Wwith energy
demand)
Oreggioni  Global CO, Global Greenh — Trend Global GHG trends  Quantifies
et al. (EDGAR  emissions ouse gas synthesis ~ shaped by socio- inequality—
(2021) v. 5.0) up to 2018 (GHG) economic emissions
(non-CO, trends transitions, relations and
emissions technology north—south
up to diffusion, and asymmetry
2015) regulation
Romero ~67 =1995— National GHG — Panel Higher  economic Jointly —models
and countries 2014 emissions econo- complexity energy per
Gramkow metrics associated with  capita and
(2021) lower GHG  inequality
intensity and per- metrics;
capita emissions provides
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hemispheric
contrast
Ajide and G7 1990-2019 National CO, Inequality Panel Evidence of Spans
Ibrahim economies (various  models inequality— global/northern
(2022) types) environment hemisphere/sou
associations in  thern
advanced hemisphere with
economies dual  inequality
indices
Ghazouani 7 Asian 1971-2014 National CO, Income Non- Non-linear, time- Tests with Gini
and Beldi countries emissions inequality —para- varying relationship; coefficient — vs.
(2022) per capita metric “equity—pollution Palma ratio;
panel dilemma™* documents
hemispheric
heterogeneity
Mehmood BRICS 1988-2017 National CO, Income Causality  Lower  inequality Places inequality
et al.  countries emissions; distti- tests associated with  alongside
(2022) renewable bution higher renewables; energy-use and
bidirectional  links land-use CO,
with CO,
Santillan 134 1971-2014 National CO, Gini Co- Gross domestic Implements unit
Salgado, countries emissions integration product (GDP), root/co-

* In this context, the expression refers to the (somewhat uncomfortable) trade-off where policies that reduce income inequality or redistribute income
toward poorer households can increase aggregate emissions.
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Valencia- per capita energy, integration and
Herrera, urbanization, and ECM/A at the
and Gini co-integrated hemispheric
Venegas- with CO; per capita  level
Martinez
(2020)
Khan, Asian 1995-2018 National ~Ecologic Poverty Panel Inequality Uses two
Yahong, developing al and models associated with  inequality
and economies footprin  inequality environmental metrics and
Zeeshan t pressute includes  land-
(2022) use emissions
Yan e al.  China 2000-2017  Sub- Emissio — Spatial/e  Financial and spatial ~ Adds
(2022) (sub- national n conometr  structures affect  global/hemisph
national) intensity ic carbon intensity eric aggregation
with agglomeration and transparent
effects imputation
Nielsen ¢¢ OECD/ ~1990— National/ Energy-  Socio- Synthesis  High-SES lifestyles Provides
al. (2021)  high- 2019 synthesis  driven economi  /review lock in or rapidly empirical north—
income GHG c status reduce  emissions south
countries emission  (SES) depending on comparison
(conceptu s choices and policies ~ with dual
al) metrics

Source: Authors’ compilation
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2024 Global Carbon Budget,t and population figures are compiled from the
2024 material to calculate per-capita values. Per-capita annual CO;
emissions from land-use change—which can be positive or negative
depending on whether land-use changes emit or sequester carbon—are also
obtained from the 2024 Global Carbon Budget and standardized using
population data from 2024.

Energy use per person is measured in kilowatt-hours per person,
representing primary-energy use calculated by the substitution method.
Data for this variable come from the U.S. Energy Information
Administration (2023) and the Energy Institute’s Statistical Review of World
Energy (2024), with population figures from 2023 used to derive per-capita
values. The Gini coefficient and the Palma ratio, both measures of income
inequality before taxes and benefits, are sourced from the World Inequality
Database for 2024.f The Gini coefficient ranges from 0 to 1, while the
Palma ratio compares the income share of the richest 10% with that of the
poorest 40%. We use the HDI from the United Nations Development
Programme’s (UNDP) Human Development Report 2025 (UNDP 2025) as a
broad, intuitive summary of human development (0-1 scale). HDI is the
geometric mean of three dimension indices: health (life expectancy at birth),
education (mean years of schooling and expected years of schooling—
combined via their arithmetic mean), and standard of living (GNI per capita
in PPP$).S Each indicator is normalized to [0,1] using UNDP’s minimum—
maximum bounds (life expectancy 20-85 years; expected schooling 0-18
years; mean schooling 0—15 years; GNI per capita Intl$100-75,000 at 2021
prices). Higher HDI reflects longer, healthier lives, better education, and
greater command over resources; it does not capture inequality,
sustainability, or subjective well-being. Given the substantial gaps in
historical data at the country level, HDI enters our analysis post-imputation
as a structural control in robustness specifications.

The average temperature anomaly, expressed in degrees Celsius, represents
the deviation of the global mean surface temperature (land and ocean
combined) from the 1961-1990 baseline. Temperature anomaly data for
2024 are obtained from the Met Office Hadley Centre.” All the variables

are harmonized for unit consistency and aligned temporally to cover the

T See the archive of the Global Carbon Budget Office:
https://globalcarbonbudget.org/archive/ .

# See the World Inequality Database: https://wid.world.

§ Gross national income per person in international dollars, adjusted for purchasing power
parity.

4 See the official website of Met Office Hadley Centre for Climate Science and Services:
https:/ /www.metoffice.gov.uk/weather/ climate/met-office-hadley-centre/index.
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period from 1965 to 2022. Data processing involves calculating per capita
measures using reliable population figures, addressing missing data with
imputation, and aggregating national data to hemispheric and global levels
using standard methods.

Coverage differs markedly across sources (e.g., high historical sparsity for
inequality and HDI vs. near-full coverage for emissions and energy). We
quantify missingness and then address internal gaps using an iterative
machine-learning imputation (Iterativelmputer with a Random Forest
regressor, 500 estimators, max_iter = 10), fitted at the country level and
leveraging all available series (temperature, energy, CO,, land-use COg,
Gini, Palma, and sectoral pollutants NH3/ BC/ CO/ CHs/ NOy/ NoO/
NMVOC/ OC) plus calendar time (see Table 2). Terminal gaps and long
data voids are left missing and excluded from the econometric estimations.

Table 2. Missing-Data Audit and Imputation Summary (Country Level, Then
Aggregated by Hemisphere)

Variable N N Percent N N Years
observed missing  age count years covered
missing ries

hdizWorld  regions 54,144 53,873 100 314 235 1710—

according to Our 2023
World in Data
hdi::HDI 54,144 47,680 88 314 235 1710-
2023
hdi::GDP per capita, 54,144 47,081 87 314 235 1710-
PPP (constant 2021 2023
international dollars)
Gini coefficient 9,710 5,176 53 255 118 1820—
2022
Palma ratio 9,710 3,182 33 255 118 1820—
2022
hdi::Population 54,144 652 1 314 235 1710—
(historical) 2023
CO; emissions 26,182 0 0 231 229 1710
2023
CO; emissions from 36,434 0 0 211 174 1850—
land use 2023
Energy use per 10,694 0 0 236 59 1965—
person 2023
Per-capita GHG 35813 0 0 209 174 1850—
emissions 2023

Source: Authors’ analysis
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After the imputation, we compute hemisphere aggregates as population-
weighted averages of country values; for per-capita variables, we weight by
country populations, and for inequality indices, we apply the same weights.
Countries intersecting the equator are not split; they are assigned to the
hemisphere containing most of their territory. The global series is
constructed as the sum of the northern and southern series, ensuring
consistent country coverage and year alignment. This sequence (impute —
aggregate) improves the reliability of the hemisphere series relative to
aggregating raw sparse data.

This dataset, spanning nearly six decades and two large geographical
systems (north/south), enables an integrated assessment of how income
distribution relates to environmental outcomes over time. Figure 1 displays
the time series for the six core variables at the global and hemispheric
scales.

We aggregate country series to the northern and southern hemispheres to
operationalize the canonical north—south development framing. This
partition is prompted by large, well-documented differences in industrial
structure, energy intensity, technology diffusion, and policy capacity that
map broadly onto the hemispheres and are central to our questions on
inequality—emissions associations. A hemispheric lens is also geographically
meaningful—countries share climatic regimes and land-use frontiers that
shape both energy demand and land conversion pressures—while yielding
non-ovetlapping, population-weighted aggregates whose sum equals the
global series. Because income and population density correlate with
emissions, we view geography as a parsimonious baseline that avoids mixing
endogenous thresholds (e.g., income cutoffs) into the classification itself;
nonetheless, income-based alternatives remain.

This geographically coherent partition captures the broad structural
asymmetries (industrial structure, energy intensity, technology diffusion, and
regulatory capacity) central to our questions, although we acknowledge that
aggregation can mask within-hemisphere heterogeneity.
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Figure 1. Annual Series (1965-2022) for CO, Emissions per Capita (Tonnes CO,
per Capita), CO, Emissions from Land-Use Change per Capita (Tonnes CO, per
Capita), Primary Energy Consumption per Capita (kWh per Capita), Gini
Coefficient (0-1), Palma Ratio (Top 10%/Bottom 40%), and Global Temperature
Anomaly (°C, Relative to 1961-1990) for the Global, Northern Hemisphere, and
Southern Hemisphere Scales
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3. EMPIRICAL ANALYSIS AND METHODS
3.1. Variable Preparation

For all three geographical aggregates—global (G), northern hemisphere (IV),
and southern hemisphere (§)—the annual series 1965—2022 are re-scaled to
the unit interval with a min—max transformation. Let

(COZ,htt TemperatureAnomaly;,, PalmaRatioy;, EnergyUseht) €
[0,1]%, he{GN,s}, t=1,..,T. M

Because the transformed origin represents the empirical minimum of every
variable, a regression without intercept preserves the economically intuitive
mapping “zero inputs — zero emissions”. We include the global
temperature anomaly as an ancillary control to capture short-run climate
variations affecting energy demand and land use. Because temperature is
also an outcome of cumulative emissions, we do not assign a causal
interpretation to its coefficient; all results are robust to excluding
temperature.

Countries straddling the equator are assigned to the hemisphere containing
the majority of their landmass; sensitivity checks with alternative splits yield
similar patterns.

3.2. Stage I: Single—Equation Ordinary Least Squares
For each region 4, we estimate,

COy pt ~ BinTemperatureAnomalyy, + B, PalmaRatio,, +
BsnEnergyUsen, + ey, Elene] = 0, Var[en] = of, @

by ordinary least squares (OLS). Inference is based on HCI
heteroskedasticity-consistent standard errors, where HC1 is White’s
heteroskedasticity-robust variance estimator (Anselin 1988; White 1980)
multiplied by the finite-sample correction #/(n — k), whete 7 is the sample
size and £ the number of regressors. The adjustment improves the small-
sample coverage of confidence intervals while converging to White’s
original HCO as # — 0. In this way, that coefficient tests remain valid even
when o,? varies with # Equation 2 yields preliminary slope estimates and
residuals, which are later used to diagnose cross-equation dependence. The
value O in the scaled version of the variables denotes the sample minimum,
not a physical zero. We estimate models with and without an intercept. The
main specification includes an intercept to allow for a baseline level of
emissions, while the no-intercept version is reported as a robustness check
that offers a weight-like interpretation of coefficients under min—max
scaling. Conclusions are robust across both versions. Coefficients are
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interpreted as conditional associations, not causal effects. Potential
endogeneity (reverse causality, omitted variables) motivates our ECM/A
checks to mitigate spurious correlation from common trends.

3.3. Stage II: Seemingly Unrelated Regression

Seemingly unrelated regression (SUR) is an econometric technique used
when several regression equations—each with its own dependent and
explanatory variables—share contemporaneously correlated error terms.
Although the equations may appear independent, their disturbances are
linked, and treating them as a system allows the estimator to exploit this
cross-equation correlation. By estimating all equations jointly through
feasible generalized least squares, SUR delivers parameter estimates that are
asymptotically more efficient than those obtained from separate OLS
regressions, especially when the contemporaneous error correlations are
substantial and the sets of regressors differ across equations.

Given the synchronized nature of global macro-shocks, the disturbance
vectors & = (eapennésy) T are unlikely to be contemporaneously independent.
Zellner’s (1962) SUR framework explicitly models that correlation and
delivers feasible generalized least squares (FGLS) estimates that are
asymptotically more efficient than equation-by-equation OLS.

System representation. Stacking the T observations for each region
produces

Yn = XnBn +ep, h e{G,N,S},

where X} is the T X 3 matrix of regressors in Equation 2.
, T
y=0eIYNnYs) X =diag(Xs Xy, Xs), B = (ﬂg; 5;'3;) .

Assuming Cov(e) = X, constant across #, the covariance of the stacked
errorsis Q=3 Q I

FGLS estimator. Let Zgpg =T Y1, 4.&], where & are the OLS
residuals from Stage I. The FGLS estimator is

Bsur = (X'Q71X)71X'Q 71y, Q=3Z0sQ1I7, O

which can be iterated once for convergence (iterative FGLS). The estimator
is unbiased and, under standard regularity conditions, asymptotically
efficient among the class of linear unbiased estimators when X is not
diagonal.

Inference and cross-equation restrictions. Robust covatiance estimates for
Bsur follow directly from Equation 3. Wald statistics test linear hypotheses
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such as Ho: finv = fis (equal Gini elasticities between hemispheres) or the
joint null Hy: X is diagonal.

Interpretation of coefficients. Because every regressor vaties from 0 to 1,
each slope gy represents the change in scaled emissions associated with a
tull-range swing in the corresponding predictor ceferis paribus. Comparisons
of By across 4 therefore quantify how the inequality—emissions and energy—
emissions associations differ between the northern and southern
hemispheres and in the global aggregate.

Advantages of the two-stage approach. Estimating Equation 2 separately
provides diagnostics and a baseline that is familiar to readers; transitioning
to Equation 3 captures the efficiency gains from the empirically large
(06N, 06s,0ns) covariances documented in Section 4. The combination yields
transparent, easily interpretable coefficients while addressing both
heteroskedasticity and cross-equation dependence; it thus satisfies the
econometric requirements for policy-relevant inference on the role of
inequality and energy use in determining per-capita land-use CO2 emissions.

Assessing non-stationarity and long-run co-movement. Because many series
trend over 1965-2022, we first test for unit roots using the ADF and KPSS
tests. The ADF test’s null is a unit root (non-stationary); rejection indicates
stationarity after controlling for low-order auto-regression. The KPSS test’s
null is the opposite—Ilevel (or trend) stationarity—so rejection there signals
non-stationarity. We run both in levels and in first differences for each
series (CO3 per capita, energy per capita, and the chosen inequality metric),
using Schwatz/Bayesian information critetion to select lags and including a
constant (and a deterministic trend where visual inspection warrants it).
Convergence warnings in the KPSS test are handled conservatively
(reporting p = 0.10 when the statistic falls outside the tabulated ranges).
Evidence of ADF non-rejection in levels combined with KPSS rejection,
alongside ADF rejection and KPSS non-rejection in first differences, is
interpreted as 1(1) behaviour, meaning that the series is integrated of order
one (it contains a unit root and becomes stationary after first differencing).

To test for long-run equilibria among the key variables, we apply two
complementary co-integration procedures. (1) The Johansen trace test
(vector error correction framework) jointly evaluates the co-integration rank
among emissions, energy, and inequality while allowing for short-run
dynamics; we report the trace statistics and 5% critical values under a
restricted constant in the co-integrating relations. (2) The Engle—Granger
two-step test estimates a levels regression and then tests the residuals for
stationarity (ADF test on residuals), where rejection implies co-integration.
When co-integration is present, we estimate a single-equation ECM in first
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differences with the lagged error correction term; otherwise, we use first-
difference regressions. All the regressions use heteroskedasticity- and
autocorrelation-consistent (Newey—West) standard errors, and the variables
are linearly re-scaled to [0,1] for comparability.

4. RESULTS

This study provides associational evidence at high levels of aggregation
(clobal, northern hemisphere, and southern hemisphere). As such, the
results may mask within-hemisphere heterogeneity and country-specific or
sub-national dynamics. Despite our checks for non-stationarity and co-
integration, our regressions remain correlational and do not establish causal
effects; coefficients should be read as conditional associations. Potential
limitations include measurement error across sources and the use of single
national proxies for inequality (Gini/Palma), which may not capture all the
distributional nuances. Before turning to coefficients, note that temperature
anomaly is included solely as an ancillary control for short-run climatic
variation in energy demand and land use. Given its simultaneity with
cumulative emissions, we do not assigh a causal interpretation to its
coefficient; all the results are robust to excluding temperature. Our
hemisphere assignment for equatorial countries follows the “majority-
landmass” rule and population-weighted aggregation; although these
choices are standard, they can affect levels and timing.

Our  hemispheric  design  emphasizes geography-linked  structural
asymmetries consistent with a North—south perspective. Alternative macro-
regional splits (e.g., the International Monetary Fund’s [IMF] advanced vs.
emerging economies, Wotld Bank income groups, or OECD vs. non-
OECD countries) are complementary lenses that organize countries by
income and policy regimes rather than by geography. Because income is
itself a key covariate in emission dynamics, income-based partitions risk
conditioning on an outcome-related criterion; we therefore keep
hemispheres as the main specification and view income-based groupings as
a robustness lens for future extensions of this study.

We first verify that the long time span does not drive spurious fits. Standard
unit-root tests (ADF and KPSS) indicate that emissions, energy use, and the
inequality metric behave as I(1) processes in the global, northern, and
southern aggregates. We then test for long-run co-movement using the
Johansen and Engle—Granger procedures and find evidence of co-
integration among the three variables; this justifies estimating ECMs rather
than relying only on levels. For global, north, and south, the core series
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behave as 1(1) (e.g., global ADF levels: CO, per capita p = 0.324, energy per
capita p = 0.400, Palma p = 0.306; ADF in first differences: p < 1.9 X 1074
KPSS in first differences: p 2 0.10). The Johansen test indicates rank = 1
for global (trace = 129 > 107) and north (117 > 107) and rank = 2 for
south (128 > 107, 83.6 > 79.3). The Engle—Granger test confirms co-
integration for global (p = 1.3 X 104) and south (p = 0.007). We therefore
estimate ECMs; the error correction coefficients are negative and significant
(global ¢ =—0.612, north ¢ = —0.587, south ¢ =—0.132), implying annual
speeds of adjustment of 61%, 59%, and 13%, respectively (half-lives = 0.73,
0.78, and 4.91 years, respectively). First-difference specifications have
substantially lower explanatory power (R? < 0.043), indicating that the high
R? in levels partly derives from common trends, while ECMs document a
stable long-run relation (see Tables 3 and 4). These diagnostics support I(1)
behaviour with co-integration among emissions, energy, and inequality,
justifying ECM specifications and mitigating concerns that the high R? in
levels could be driven by common trends alone.

Table 3. Unit-Root Test Applied to Individual Datasets in This Study

Time-series ADF_  KPSS_ ADF_diff_p KPSS_diff_p

Aggregate variable level_ p level_p
COzemissions  0.021 0.100 343 x10°  0.100
Energy use per 0.273 0.100 1.96 x 10¢  0.100
person

Northern  Palma ratio 0.922 0.001 2.32 x 1012 0.100
HDI 0.984 0.001 0.06 0.018
Temperature 0.995 0.001 0.000 0.100
anomaly
CO; 0.002 0.001 7.08 X 1010 0.023
Energy use per 0.519 0.100 0.000 0.100
petson

Southern  Palma ratio 0.599 0.001 7.75 X 106 0.100
HDI 0.045 0.001 0.233 0.048
Temperature 0.664 0.001 5.80 x 10> 0.100
anomaly
CO; 0.324 0.022 3.10 x 101 0.100
Energy use per 0.400 0.100 0.000 0.100
petson

Global Palma ratio 0.306 0.001 1.19 x 10> 0.100
HDI 0.989 0.001 0.025 0.017
Temperature 0.987 0.001 0.000 0.100
anomaly

Source: Authors’ analysis
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Table 4. Engle—Granger, Johansen, and ECM Tests Applied to Individual Datasets
in This Study CV5 denotes the 5% critical value of the corresponding trace statistic.

Test Characteristic Northern Southern Global
hemisphere hemisphere

Johansen Trace ny 117 128 129
CV5 n 107 107 107
Trace 73.8 83.6 77.9
CV5n 79.3 79.3 79.3
Rank > 1 True True True
Rank > 2 False True False

Engle— P 0.0632 0.0071 0.0001

Granger

ECM drom —0.587 —0.132 —0.612
iSe vt =2.77 -3.31 -3.34
PrcMm 0.0056 0.00009 0.0008
Speed (adjusted)  0.587 0.132 0.612
Half-life years 0.784 491 0.733
R2pc 0.36 0.146 0.34

Note: CV5 denotes the 5% critical value of the corresponding trace statistic.
Source: Authors’ analysis

4.1. Correlation Analysis and Economic Implications

Analysing the correlation matrices (Figure 2) reveals distinct patterns across
regions. In the northern hemisphere, temperature anomaly strongly
correlates with the Gini coefficient (0.645) and Palma ratio (0.752),
indicating that higher inequality aligns with greater temperature deviations.
It also shows a strong negative correlation with CO» emissions from land-
use change (—0.753), while its association with global CO; emissions (—
0.261) and energy consumption (0.162) is weaker. The strong correlations
between inequality measures and temperature anomalies suggest that higher
income disparity may drive consumption patterns that exacerbate climate
variability, as wealthier segments of society typically engage in energy-
intensive consumption, leading to increased emissions.

In the southern hemisphere, temperature anomaly is positively correlated
with inequality measures—though the correlations are slightly lower than in
the north (Gini: 0.586, Palma: 0.562). Notably, temperature anomaly has a
moderate positive correlation with global CO» emissions (0.578) and a
strong negative correlation with land-use change emissions (—0.557). Energy
consumption shows a negligible correlation with temperature anomaly in
this region. The moderate positive association between temperature
anomaly and global CO; emissions in the south implies a more direct



Ecology, Economy and Society—the INSEE Journal [104]

emission—climate connection, potentially due to different industrial or land-
use practices from the north.

Globally, temperature anomaly correlates strongly with the Gini coefficient
(0.721) and moderately with the Palma ratio (0.584), reinforcing the link
between inequality and climate change. It is negatively correlated with CO-
emissions from land-use change (—0.740) and shows modest associations
with global emissions (—0.336) and energy consumption (0.124). The
observed global patterns underscore that rising inequality is consistently
associated with higher temperature anomalies, but the nature and strength
of these relationships vary by region (Dang, Hallegatte, and Trinh 2024;
Huynh and Phan 2024; Paglialunga, Coveri, and Zanfei 2022).

4.2. Regional Differences and Policy Insights

The northern hemisphere exhibits the strongest associations between
inequality and temperature anomaly, highlighting the potential for socio-
economic factors to influence environmental outcomes in industrialized
regions. The strong negative relationship across both hemispheres between
temperature anomaly and CO; emissions from land-use change may reflect
periods of effective carbon sequestration or reduced deforestation,
coinciding with warming trends. These findings suggest that addressing
income inequality could contribute to mitigating climate variability; regional
policies should consider local economic and environmental contexts to
effectively tackle both socio-economic disparities and climate change
(Dwarkasing 2023; Silva, Matyas, and Cunguara 2015).

4.3. Region-Specific OLS Results

Annual time-series regressions were estimated separately for each
hemisphere and for the global aggregate to gauge the marginal
contributions of income distribution and energy use to CO2 emissions. All
the variables are entered in the min—max scaleand the regressions are
estimated without an intercept; heteroskedasticity-consistent (HC1)
standard errors accompany every coefficient. Table 5 gives the full set of
estimates. The temperature anomaly behaves as a small ancillary control—
insignificant in the north and modest in the global and south scales—while
the core conclusions hinge on energy use and inequality.
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Figure 2. Heat Map of Correlation Matrices for Key Variables across the Northern Hemisphere, Southern Hemisphere, and Global Scales.
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Table 5. Regression Results for Six OLS Models Predicting CO» Emissions (Global and from Land-Use Change) across the Northern
Hemisphere, Southern Hemisphere, and Global Scales

Akaike Bayesian
Independent Scale Dependent variable Coefficie ~ Standard fvalue p> |1 R information infor@adon
variable nt error criterion criterion
(AIC) (BIC)
Temperature 0.281 0.223 1.248 0217 0791  -36.40 —26.10
anomaly
Northern Gini coefficient 0.159 0.273 0.582  0.563
hemisphere Palma ratio 0.229 0.278 0.825 0.413
HDI —0.577 0.150 —3.838  0.000
Energy consumption  0.874 0.132 6.613  0.000
Temperature 1.056 0.162 6.541  0.000 0958 -37.60 —27.30
anomaly
Global CO» Southern Gini coefﬁcient 0.732 0.253 2.896  0.005
emissions hemisphere Palma ratio —0.515 0.234 —2.201  0.032
HDI —0.358 0.112 -3.207  0.002
Energy consumption  0.464 0.090 5.149  0.000
Temperature —0.690 0.335 —2.064 0.044 0.725 3.98 14.28
anomaly
Gini coefficient 0.214 0.457 0.459  0.641
Global Palma ratio 0.361 0.320 1.131  0.263
HDI -0.110 0.230 —0.479  0.634
Energy consumption  1.236 0.154 8.038  0.000
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Temperature 0.021 0.439 0.049 0961  0.604 41.13 51.43
anomaly
Northern Gini coefficient 1.701 0.532 3.196  0.002
hemisphere Palma ratio —0.476 0.531 —0.881 0.383
HDI -1.071 0.294 —3.652  0.001
Energy consumption  0.936 0.258 3.630  0.001
- —0.066 0.231 -0.288 0.775 0.788  3.72 14.03
CQZ ' Southern Gini coefﬁcient 1.194 0.361 3.307  0.002
emissions hemisphere Palma ratio —0.886 0.334 —2.652  0.011
from land use HDI —0.417 0.159 —2.620  0.011
Energy consumption  1.210 0.129 9.390  0.000
Temperature —0.987 0.378 -2.612 0.012 0.718  18.08 28.38
anomaly
Global Gini coefﬁcient 1.691 0.516 3.277  0.002
Palma ratio —0.199 0.361 —0.553  0.583
HDI —0.615 0.260 —2.368  0.022
Energy consumption  1.004 0.174 5.785  0.000

Note: The table presents coefficients, standard errors, 7 values, p values, R?, AIC, and BIC for models including the Gini
coefficient, the Palma ratio, the HDI, and energy consumption as predictors.

Source: Authors’ analysis



Ecology, Economy and Society—the INSEE Journal [108]

Global CO; emissions. For the northern hemisphere, pet-capita primary-
energy consumption is the dominant covariate (6 = 0.874, p < 0.001). HDI
is negative and significant (§ = —0.577, p < 0.001). Gini and Palma are not
significant (p = 0.563 and 0.413, respectively), and temperature anomaly is
also not significant (p = 0.217). Model fit is high (R* = 0.791). For the
southern hemisphere, all the blocks contribute, and the model fit is very
high (R? = 0.958). Energy per capita is positive (§ = 0.464, p < 0.001). For
inequality, Gini is positive and significant (§ = 0.732, p = 0.000), while
Palma is negative and significant (§ = —0.515, p = 0.032), indicating that
overall dispersion and top-tail concentration capture distinct facets of the
income distribution. HDI is negative (§ = —0.358, p = 0.002), and
temperature anomaly is positive (§ = 1.056, p < 0.001). At the global level,
energy per capita is the most robust predictor (§ = 1.236, p < 0.001). Gini,
Palma, and HDI are not significant (p = 0.641, 0.263, and 0.634,
respectively), while temperature anomaly is small and marginal (§ = —0.690,
p = 0.044). The model explains K* = 0.725 of the annual variation.

CO; emissions from land-use change. For the northern hemisphere, energy
per capita is the strongest driver (§ = 0.936, p < 0.001). Gini is positive and
significant (§ = 1.701, p = 0.002), while Palma is not significant (p = 0.383).
HDI is negative (8 = —1.071, p = 0.001), and temperature anomaly is
insignificant. The model explains K* = 0.604 of the variation, indicating that
overall dispersion in incomes (Gini) relates to land-use emissions in the
north whereas top-tail concentration (Palma) does not. For the southern
hemisphere, the association is tighter (R* = 0.788). Energy is again strongly
positive (f = 1.210, p < 0.001). Gini is positive and significant (§ = 1.194, p
= 0.002), and Palma is negative and significant (§ = —0.886, p = 0.011),
suggesting that overall inequality and top-end concentration affect land-use
emissions through different channels (cf. Barbier 2008; Ceddia ez a/. 2014).
HDI is negative (§ = —0.417, p = 0.011), and temperature anomaly is not
significant. At the global level, energy is once more the central predictor (6
= 1.004, p < 0.001). Gini is positive and significant (§ = 1.691, p = 0.002),
while Palma is not significant (p = 0.583). HDI is negative (§ = —0.615, p =
0.022), and temperature anomaly is negative and significant (§ = —0.987, p
= 0.012). Overall fit is high (R* = 0.718)—mirroring the hemispheric
pattern in which energy and overall inequality (Gini) matter systemically—
whereas Palma contributes only in the south.

Before turning to mechanisms, note that our OLS specifications report Gini
and Palma jointly. Their correlation is high in some aggregates (especially
the south) but not uniformly so, and the coefficients are sufficiently stable
for inference in the pooled display. Still, to guard against multi-collinearity,
we also re-estimate single-metric models (Gini only/Palma only) and obtain
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the same qualitative conclusions; hence, the joint tables are meant to
provide transparency rather than depending on a particular pairing.

Energy use is the most pervasive and quantitatively important determinant
of CO, emissions—both for total emissions and for the land-use
component—across all scales. This underscores the central role of energy
systems in mitigation: Shifting away from carbon-intensive fuels and
improving efficiency are the most immediate pathways to reducing per-
capita emissions, even when other fundamentals remain unchanged (Le
Quéré et al. 2019).

The influence of income distribution is clearly asymmetric across
hemispheres. In the South, higher overall inequality (Gini) is positively
associated with both aggregate and land-use emissions, whereas, holding the
Gini coefficient constant, the Palma ratio is negatively associated with
emissions. A plausible interpretation is that avoiding further increases
in top-end income concentration—that is, keeping the Palma ratio relatively
low—coincides with weaker pressures for land conversion. This pattern is
apparent in settings where broader coalitions or redistributive institutions
demand stronger environmental safeguards. In contrast, in the north,
neither overall inequality nor top-tail concentration shows a statistically
detectable effect once energy use is controlled for; this is consistent with
the context of mature, capital- and technology-intensive economies, which
rely less on land-extensive production (Parks and Roberts 2008).

At the global level, these effects are largely offset because the correlations
for each hemisphere differ in both sign and magnitude. This heterogeneity
calls for geographically differentiated policy: redistribution programmes to
curb extreme income dispersion may be particulatly effective at reducing
emissions related to land-use change in the south, while energy system
transformations (efficiency and fuel substitution) are universally beneficial.

4.4. Linking Mechanisms to Real-World Contexts

In the southern hemisphere, commodity exports have often grown through
land-extensive production under conditions of unequal asset structures and
uneven access to finance. In the Brazilian Amazon, tightening rural credit to
environmentally risky borrowers causally reduced deforestation, illustrating
how distributional access to finance and enforcement of environmental
policy interact with land-use outcomes (Assungio et 2/ 2020). Enforcement
capacity itself matters: Satellite-driven DETER monitoring and related
enforcement constraints explain the vatriation in clearing (Merkus 2024).
Beyond Brazil, comparative evidence highlights weak governance as a
persistent underlying factor in forest loss across Sub-Saharan Africa; where
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regulatory capacity is limited, the pressure to reduce deforestation is
amplified (Nansikombi ez 2/ 2020).

In the northern hemisphere, the limited incremental role of inequality—
once energy use is controlled for—accords with evidence of declines in
structural CO, in advanced economies since 2007 due to efficiency
improvements, fuel switching/cleaner power, and binding policy regimes
(e.g., carbon pricing) (D’Arcangelo ef al. 2022; IEA 2024). Cross-country
estimates suggest that a €10 increase in effective carbon prices is associated
with an approximately 3.7% long-run reduction in CO; emissions from
fossil fuels (D’Arcangelo et al., 2022).

Taken together, the six region-specific OLS regressions indicate that (1)
carbon intensity and scale of energy use are the principal channels driving
emissions everywhere and (2) inequality modulates those channels in ways
that depend on regional structures. In the next sub-section, we show that
these results persist—with tighter standard errors—when the three
equations are estimated jointly as an SUR system.

4.5. System-wide SUR Estimates and Substantive Implications

Table 6 summarizes the FGLS estimates obtained from the SUR systems
for (1) per-capita CO; emissions stemming from land-use change and (2)
aggregate per-capita COz emissions.

Because the unexplained shocks in the three equations are strongly
correlated, estimating them jointly is more appropriate than running
separate OLS regressions. Feasible GLS in the SUR framework raise the
overall explanatory power to overall R? = 0.61 for land-use CO; per capita
and 0.8815 for total CO; per capita, and reduce the standard errors. The
residual-correlation matrix is informative. For land-use CO,, disturbances
in global-north move almost in lock-step (gon = 0.96), with strong
correlations for global-south (0.87) and north—south (0.83). For total CO,
oon = 0.92 is high, while the values for global-south and north—south are
more moderate (0.33 and 0.45, respectively), indicating that common
shocks are tighter for land-use processes than for fossil-fuel emissions.

Temperature anomaly loads negatively in all land-use equations (global
—0.8013*1t north —0.7979*, south —0.3421*), which is consistent with
abnormally warm years coinciding with slower clearing or net re-growth.
For total COg, the value is small and negative at the global level (—0.4227%),
is not retained for the north (jointly insignificant in the SUR system), and

5> The asterisk denotes significance.
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turns positive in the south (0.9342*); this is consistent with heat- and
drought-related shifts in energy use or land-use practices in the tropical
belts (e.g., temporary reliance on diesel power, fire-based clearing). These
contrasts support considering land and energy pathways separately when
developing mitigation strategies for the tropics.

Table 6. SUR Coefficients by Hemisphere and Emission Type

Land-use CO; (per capita) Total CO: (per
capita)
Global North South Global Notth South
Temper- —0.8013%+% —0.7979F%k _0.3421F%F —0.4227* 0.934 2%k
ature
anomaly

Energy  0.9412%%  (0.9899***  1.0267***  1.1433%**  0.7607***  0.4628%**
use (per

capita)

Gini 0.7739%+* 0.8753*** 0.8076***
Palma 0.9508*F*  —0.4413* 0.4694**%*  —0.5408**+*
Reyera 0.61 0.88

Residual correlations ()

Land use: pon = 0.96, pcs = 0.87, pxs = 0.83

Total: pox = 0.92, pos = 0.33, pxs = 0.45

Note: The blank cells indicate the regressors excluded from the joint system to
alleviate multi-collinearity (Gini vs. Palma) or because they were jointly insignificant
in SUR. The asterisks denote significance in the SUR covariance structure at 1%
(**%), 5% (**), and 10% (*); the blank cells indicate p > 0.10. Robust HC1 standard
errors underlie all the 7 statistics. The lower panel shows the contemporaneous
cotrelation matrix X, of the equation residuals.

Source: Authors’ analysis

Per-capita primary-energy use is uniformly positive and statistically decisive
across all equations (land use: global 0.9412*, north 0.9899%, south 1.0267%;
total: global 1.1433*, north 0.7607*, south 0.4628%); this corroborates the
centrality of energy systems found in decomposition studies (Le Quéré ez ai.
2019). Although the coefficients are numerically small due to our [0,1]
scaling, their precision indicates that even marginal efficiency gains and fuel
switching are associated with measurable per-capita emission reductions.

Inequality exhibits a clear north—south asymmetry that persists under joint
estimation. For land-use CO,, Gini is positive and significant where
included (global 0.7739*, south 0.8753*), while Palma is positive in the
north (0.9508*) but negative in the south (—0.4413*). For total CO,, Gini is
positive in the south (0.8076%*), whereas Palma is positive in the north
(0.4694%) and negative in the south (—0.5408*%). Taken together, overall
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dispersion (Gini) is associated with higher emissions in the south, while
top-tail concentration (Palma) contributes positively in the north and
negatively in the south; this is consistent with different institutional and
land-use channels.

The SUR estimates confirm and sharpen the OLS patterns. Energy use per
capita is the dominant correlate everywhere, but the magnitude and even
the direction of the inequality associations hinge on geography and
emission channel. The implications are threefold:

Rapid decarbonization and electrification are universally beneficial; their
impact is magnified where inequality is addressed.

Redistribution or inclusive land governance may yield a double dividend in
the south—curbing both fossil-fuel and land-use emissions—whereas in
high-income northern economies, inequality policies alone are unlikely to
deliver large short-run climate gains without energy system change.

Models that aggregate hemispheres risk masking these asymmetric
elasticities; region-differentiated policy design is therefore empirically
warranted.

5. CONCLUSIONS

The seemingly unrelated regressions show three empirically grounded
regularities. First, per-capita primary-energy consumption is the most stable
predictor in the dataset. It enters with a positive and significant coefficient
in every equation except the northern land-use regression, where the
estimate is positive but not distinguishable from zero. This pattern confirms
that energy use explains an important share of annual variation in both total
CO emissions and the land-use component.

Second, the two indicators of income distribution show that its effect on
emissions depends on both hemisphere and emission channel. The Gini
coefficient is positive and highly significant in all southern equations and in
the global system, yet it is statistically irrelevant for northern fossil-fuel
emissions. Conditional on that broad measure of inequality, the Palma ratio
is significantly negative for land-use emissions in the south and at the global
level, while it is insignificant elsewhere. These differences indicate that the
link between inequality and emissions is not uniform but instead varies with
regional context and with the source of emissions examined.

Third, surface-temperature anomalies display contrasting signs across
channels. Warmer-than-average years coincide with lower land-use
emissions in all regions, whereas in the southern hemisphere they coincide
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with higher fossil-fuel emissions. The sign reversal suggests that warming
affects emission pathways differently across regions.

Estimating the three equations jointly is statistically warranted.
Contemporaneous residual correlations range from 0.20 to 0.85, and the
SUR framework raises the overall goodness of fit to 0.61 for land-use
emissions and 0.88 for total emissions while reducing standard errors
relative to separate OLS. Each of these conclusions is directly supported by
the coefficient estimates and diagnostic statistics reported in Sections 4.3
and 4.4.

6. POLICY IMPLICATIONS AND DIRECTIONS FOR FUTURE
RESEARCH

The empirical evidence points to a clear priority. Because per-capita energy
use stands out as the most consistent and quantitatively important driver of
both total and land-use CO; emissions, policies that help lower the carbon
intensity of energy consumption—through efficiency gains, electrification
from low-carbon sources, or both—are likely to yield the most immediate
mitigation benefits. At the same time, the results reveal that income
inequality modulates emissions in region-specific ways. The broader overall
dispersion of incomes increases emissions in the southern hemisphere and,
by extension, in the global aggregate, whereas inequality plays a limited role
in the northern fossil fuel equation. These findings imply that mitigation
strategies should be geographically differentiated. Energy system reforms
are essential everywhere, but in regions where inequality significantly
augments emissions—most notably the south—complementary measures
to narrow income distribution gaps and reform land governance can
reinforce the emission reduction strategies of energy policies.

Several avenues for further work emerge directly from the present results.
First, the analysis is static and linear; extending it to dynamic specifications
such as panel error correction models would clarify how quickly emissions
adjust to energy-use, inequality, and temperature shocks and would help
disentangle short-run fluctuations from long-run equilibria. Investigating
possible endogeneity—for instance, via instrumental-variable SUR or
dynamic panel methods—could refine causal interpretation, especially for
the ( coefficients. Second, the dataset aggregates emissions and energy use
at the hemispheric scale. Future research could disaggregate by sector or by
finer geographic units to examine whether the inequality—emissions nexus
observed in the south is driven by particular industries (e.g., agricultural vs.
extractive sectors) or by specific countries within the hemisphere.
Incorporating institutional variables—such as land tenure security,
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environmental governance indices, or renewable energy adoption rates—
would further illuminate the mechanisms behind the regional asymmetries
documented here.

Taken together, these extensions would move the evidence base beyond
correlation towards a richer understanding of the causal pathways linking
energy systems, economic distribution, and carbon outcomes, thereby
providing stakeholders with more precise input for designing region-
appropriate climate policies.

Future research could leverage country- or sub-national panel designs with
policy shocks or plausibly exogenous instrumental variables—variables that
shift income distribution or carbon pricing but are otherwise unrelated to
emissions, conditional on controls—incorporate spatial dependence, and
examine distribution-sensitive measures of inequality (Kopp, Thomas, and
Markus Nabernegg, 2022) and sectoral emissions to unpack the
mechanisms we document here.

The results are associational and reported at high levels of aggregation
(global/north/south), which may conceal country- or sector-specific
dynamics and raises the usual ecological-fallacy caveat. We therefore
interpret coefficients as conditional associations and explicitly address non-
stationarity (ADF/KPSS) and long-trun co-movement (Johansen/Engle—
Granger, ECMs), using SUR to exploit cross-equation covariance. A
country panel design with sectoral detail and identification strategies is a
natural extension of this study. As a robustness lens for future work,
regrouping countries by income or policy regime (e.g., Wotld Bank/IMF
classifications) and estimating panel ECMs with spatial dependence could
uncover the heterogeneity that our hemispheric aggregates necessarily
suppress.
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