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A Global and Hemispheric Analysis of the 
Relationship between Environmental Sustainability 
and Economic Inequality  
Mairene Tobón Ospino, Humberto Marbello-Peña, and David Sierra-

Porta   

Abstract: In this article, we examine how income distribution and energy use 
shaped per-capita CO2 emissions between 1965 and 2022 at three spatial scales—
world, northern hemisphere, and southern hemisphere. After re-scaling all the 
variables to the unit interval, we first estimate separate ordinary least squares 
regressions and then re-estimate the three equations jointly with Zellner’s seemingly 
unrelated regression, a step warranted by the substantial contemporaneous error 
correlation. Across both emission channels—aggregate CO2 and the land-use 
component—energy consumption emerges as the most consistent and statistically 
powerful predictor. Inequality effects are heterogeneous. The Gini coefficient 
amplifies emissions in the southern hemisphere and in the global system but is 
negligible in the northern fossil-fuel equation, while the Palma ratio reduces land-
use emissions once overall inequality is held constant. Temperature anomalies 
display a further asymmetry, reducing land-use emissions everywhere, yet 
coinciding with higher fossil-fuel emissions in the south. Joint estimation raises the 
system-wide goodness of fit to 0.97 for land-use emissions and 0.99 for total 
emissions and yields more precise coefficients than the separate regressions. The 
results indicate that decarbonizing energy systems is a universal mitigation priority, 
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whereas distributional reforms and land-governance measures are likely to deliver 
the greatest additional benefits in the southern hemisphere.  

Keywords: CO2 Emissions, Economic Inequality, Energy Consumption, 
Temperature Anomaly, Regional Analysis. 

 

1. INTRODUCTION 

Global climate change, primarily driven by anthropogenic CO₂ emissions, 
has become a major international concern (Wang et al. 2015; Wang and 
Feng 2017). A large literature links emissions to energy systems and macro-
structural drivers—including energy mix and energy intensity (Wang et al. 
2015; Wang and Feng 2017), industrial structure (Romero and Gramkow 
2021; Wang, Kuang, and Huang 2011), economic activity and population 
scale (Le Quéré et al. 2019; Oreggioni et al. 2021), and financial/spatial 
structures shaping carbon intensity (Yan et al. 2022). While rising incomes 
and populations are often associated with higher emissions, they are neither 
necessary nor sufficient conditions; energy structures and emission 
intensities frequently emerge as crucial determinants. The relationship 
between warming and human activities is complex, encompassing energy 
consumption, human development, and economic activity; yet their relative 
importance, particularly for less developed countries, continues to be 
debated (Hao 2022). In recent years, research has increasingly linked socio-
economic inequality to environmental outcomes, raising questions about 
whether—and through which channels—income distribution determines 
emission intensity (Khan, Yahong, and Zeeshan 2022). 

Beyond cross-country averages, who emits within a country matters. Recent 
assessments have documented that upper-income groups account for a 
growing fraction of emissions—including in emerging economies—and that 
within-country emissions inequality now rivals or exceeds between-country 
gaps (Chancel, Bothe, and Voituriez 2023; Chancel et al. 2022; UNEP 
2023). This further motivates the use of a lens that can distinguish structural 
north–south patterns while remaining sensitive to distributional dynamics. 
However, two gaps remain. First, most of the evidence is national or sub-
national—informative for within-country dynamics but not designed to 
reveal hemispheric asymmetries that may arise from systematic differences 
in industrial composition, energy intensity, technological diffusion, and 
policy capacity (Dong, Dou, and Jiang 2022). Second, cross-country 
comparisons typically rely on a single inequality index—most often Gini—
which is less sensitive to tail dynamics than the Palma ratio. Consequently, 
it is unclear whether conclusions hinge on the chosen inequality metric and 
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whether the inequality–emissions nexus is symmetric across hemispheres 
over multiple decades. 

This article addresses these gaps with a long-horizon global and 
hemispheric assessment of the association between environmental pressure 

and income distribution. We link CO₂ emissions per capita (including land-
use change emissions) and primary-energy use per capita over the years 
1965–2022 with two complementary inequality measures—Gini (overall 
dispersion, 0–1) and Palma (top 10% over bottom 40%)—using 
transparent, population-weighted aggregation from country data. Our 
analysis is guided by three questions: (1) How are inequality and 
environmental pressure related globally and by hemisphere over the long 
run? (2) Do these relationships differ meaningfully between the northern 
and southern hemispheres? (3) Are the main patterns robust to using Gini 
versus Palma as the inequality proxy? 

A rich, theoretical, and empirical literature motivates these questions. 
Greater inequality can amplify emissions via luxurious consumption by 
high-income groups and consumption/behavioural channels in developing 
economies (Ahmad, Muslija, and Satrovic 2021; Pata et al. 2022), the 
political economy of regulation, and unequal access to land and credit, 
which influences land-use change; conversely, concentrated capital and 
faster diffusion of clean technologies could mitigate emissions in some 
settings (Duarte, Miranda-Buetas, and Sarasa 2021; Munasinghe 1999; Ray, 
Baland, and Dagnelie 2007; Sovacool et al. 2022; Sinha et al. 2023; Wang, Li, 
and Li 2023; Wang, Uddin, and Gong 2021). Empirically, results are mixed: 
Some studies report negative or non-linear links, or neutrality, underscoring 
the role of context and timing (Ghazouani and Beldi 2022; Mehmood et al. 
2022; Ngankam 2024; Guo, et al. 2022). Over the long run, inequality often 
appears intertwined with emissions through macro-energy channels 
(Santillán Salgado, Valencia-Herrera, and Venegas-Martínez 2020). 

We bring these strands together in a single comparative framework 
spanning nearly six decades and three aggregates—global, northern 
hemisphere, southern hemisphere—and include the global temperature 
anomaly to characterize the climatic backdrop. Missing values are handled 
transparently via an iterative machine-learning imputation (Random Forest, 
500 trees; internal gaps only), after which country series are aggregated 
using population weights, with equatorial countries assigned based on 
majority landmass. We anticipate that energy use per capita will be the most 
pervasive correlate of emissions across all aggregates. Inequality here 
signifies hemispheric asymmetries—which are stronger and sign-
differentiated in the south—and these patterns are robust to using either 
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Gini or Palma. Because many series trend over time, we assess unit roots 
(using the augmented Dickey–Fuller [ADF] test and the Kwiatkowski–
Phillips–Schmidt–Shin [KPSS] test) and co-integration (Johansen, Engle–
Granger) and estimate error correction models (ECMs) or first-difference 
models; the core associations persist once common trends are accounted 
for. 

Throughout, coefficients are read as conditional associations rather than 
causal effects. The global average temperature anomaly is included as an 
ancillary control—it can influence energy demand and land-use practices in 
the short run—but we do not assign a causal interpretation to the 
coefficient of this factor, given its simultaneity with cumulative emissions. 
The hemispheric lens is informative for large-scale patterns but may mask 
within-hemisphere heterogeneity. Future work could deploy country or sub-
national panel designs with stronger identification to unpack mechanisms. 
Taken together, our analysis clarifies where inequality appears most 
associated with emissions, and where energy system transformation is the 
dominant lever for mitigation. 

Finally, to situate our contribution, Table 1 synthesizes representative 
studies on inequality and emissions—summarizing regions, periods, 
outcome variables, inequality metrics, and methods alongside headline 
findings. This comparison clarifies how our hemispheric, dual-metric (Gini 
and Palma), long-horizon approach—combined with machine learning–
based imputation and co-integration-centred estimation—extends the 
literature. 

 

2. DATA 

This study uses a dataset from 1965 to 2022 that examines the relationships 
between environmental indicators and economic inequality on the global, 
northern hemisphere, and southern hemisphere scales. The variables 
analysed include per-capita GHG emissions, annual CO2 emissions from 
land-use change per capita, energy use per person, the Gini coefficient, the 
Palma ratio, the Human Development Index (HDI), and the global average 
temperature anomaly. 

Per-capita GHG emissions are calculated by combining CO2, CH4, and 
N2O from all sources, including land-use change, measured in tonnes of 
CO2 equivalent over a 100-year  timescale.  The  data are  sourced from  the 

 



[91] Tobón Ospino, Marbello-Peña and Sierra-Porta 

Table 1. Selected Studies on Inequality and Emissions: Regions, Methods, Key Findings, and How the Present Study 
Advances the Field 

Study Regions/ 
coverage 

Period Scale Outcomes Inequality 
metric(s) 

Methods Key findings How the 
present study 
advances the 
field 

Le Quéré 
et al. 
(2019) 

18 
developed 
economies 

2005–2015 National, 
multi-
country 

CO₂ 
emissions 

— Decom-
position 
of drivers 

CO₂ reduction 
linked to efficiency 
improvements and 
fuel switching (plus 
structural changes 
and consumption 
demand) 

Adds 
hemispheric 
comparison; 
tests inequality 
channels jointly 
with energy 

Oreggioni 
et al. 
(2021) 

Global 
(EDGAR 
v. 5.0) 

CO₂ 
emissions 
up to 2018 

(non-CO₂ 
emissions 
up to 
2015) 

Global Greenh
ouse gas 
(GHG) 
trends 

— Trend 
synthesis 

Global GHG trends 
shaped by socio-
economic 
transitions, 
technology 
diffusion, and 
regulation 

Quantifies 
inequality–
emissions 
relations and 
north–south 
asymmetry 

Romero 
and 
Gramkow 
(2021) 

~67 
countries 

≈1995–
2014 

National GHG 
emissions 

— Panel 
econo-
metrics 

Higher economic 
complexity 
associated with 
lower GHG 
intensity and per-
capita emissions 

Jointly models 
energy per 
capita and 
inequality 
metrics; 
provides 
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hemispheric 
contrast 

Ajide and 
Ibrahim 
(2022) 

G7 
economies 

1990–2019 National CO₂ Inequality 
(various 
types) 

Panel 
models 

Evidence of 
inequality–
environment 
associations in 
advanced 
economies 

Spans 
global/northern 
hemisphere/sou
thern 
hemisphere with 
dual inequality 
indices 

Ghazouani 
and Beldi 
(2022) 

7 Asian 
countries 

1971–2014 National CO₂ 
emissions 
per capita 

Income 
inequality 

Non-
para-
metric 
panel 

Non-linear, time-
varying relationship; 
“equity–pollution 
dilemma”* 

Tests with Gini 
coefficient vs. 
Palma ratio; 
documents 
hemispheric 
heterogeneity 

Mehmood 
et al. 
(2022) 

BRICS 
countries 

1988–2017 National CO₂ 
emissions; 
renewables 

Income 
distri-
bution 

Causality 
tests 

Lower inequality 
associated with 
higher renewables; 
bidirectional links 

with CO₂ 

Places inequality 
alongside 
energy-use and 

land-use CO₂ 

Santillán 
Salgado, 

134 
countries 

1971–2014 National CO₂ 
emissions 

Gini Co-
integration 

Gross domestic 
product (GDP), 

Implements unit 
root/co-

                                                      

* In this context, the expression refers to the (somewhat uncomfortable) trade-off where policies that reduce income inequality or redistribute income 
toward poorer households can increase aggregate emissions. 
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Valencia-
Herrera, 
and 
Venegas-
Martínez 
(2020) 

per capita energy, 
urbanization, and 
Gini co-integrated 

with CO₂ per capita 

integration and 
ECM/Δ at the 
hemispheric 
level 

Khan, 
Yahong, 
and 
Zeeshan 
(2022) 

Asian 
developing 
economies 

1995–2018 National Ecologic
al 
footprin
t 

Poverty 
and 
inequality 

Panel 
models 

Inequality 
associated with 
environmental 
pressure 

Uses two 
inequality 
metrics and 
includes land-
use emissions 

Yan et al. 
(2022) 

China 
(sub-
national) 

2000–2017 Sub-
national 

Emissio
n 
intensity 

— Spatial/e
conometr
ic 

Financial and spatial 
structures affect 
carbon intensity 
with agglomeration 
effects 

Adds 
global/hemisph
eric aggregation 
and transparent 
imputation 

Nielsen et 
al. (2021) 

OECD/ 
high-
income 
countries 
(conceptu
al) 

≈1990–
2019 

National/ 
synthesis 

Energy-
driven 
GHG 
emission
s 

Socio-
economi
c status 
(SES) 

Synthesis
/review 

High-SES lifestyles 
lock in or rapidly 
reduce emissions 
depending on 
choices and policies 

Provides 
empirical north–
south 
comparison 
with dual 
metrics 

Source: Authors’ compilation 
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2024 Global Carbon Budget,† and population figures are compiled from the 
2024 material to calculate per-capita values. Per-capita annual CO2 

emissions from land-use change—which can be positive or negative 
depending on whether land-use changes emit or sequester carbon—are also 
obtained from the 2024 Global Carbon Budget and standardized using 
population data from 2024. 

Energy use per person is measured in kilowatt-hours per person, 
representing primary-energy use calculated by the substitution method. 
Data for this variable come from the U.S. Energy Information 
Administration (2023) and the Energy Institute’s Statistical Review of World 
Energy (2024), with population figures from 2023 used to derive per-capita 
values. The Gini coefficient and the Palma ratio, both measures of income 
inequality before taxes and benefits, are sourced from the World Inequality 
Database for 2024.‡ The Gini coefficient ranges from 0 to 1, while the 
Palma ratio compares the income share of the richest 10% with that of the 
poorest 40%. We use the HDI from the United Nations Development 
Programme’s (UNDP) Human Development Report 2025 (UNDP 2025) as a 
broad, intuitive summary of human development (0–1 scale). HDI is the 
geometric mean of three dimension indices: health (life expectancy at birth), 
education (mean years of schooling and expected years of schooling—
combined via their arithmetic mean), and standard of living (GNI per capita 
in PPP$).§ Each indicator is normalized to [0,1] using UNDP’s minimum–
maximum bounds (life expectancy 20–85 years; expected schooling 0–18 
years; mean schooling 0–15 years; GNI per capita Intl$100–75,000 at 2021 
prices). Higher HDI reflects longer, healthier lives, better education, and 
greater command over resources; it does not capture inequality, 
sustainability, or subjective well-being. Given the substantial gaps in 
historical data at the country level, HDI enters our analysis post-imputation 
as a structural control in robustness specifications. 

The average temperature anomaly, expressed in degrees Celsius, represents 
the deviation of the global mean surface temperature (land and ocean 
combined) from the 1961–1990 baseline. Temperature anomaly data for 
2024 are obtained from the Met Office Hadley Centre.** All the variables 
are harmonized for unit consistency and aligned temporally to cover the 

                                                      

† See the archive of the Global Carbon Budget Office: 
https://globalcarbonbudget.org/archive/ . 
‡ See the World Inequality Database: https://wid.world. 
§ Gross national income per person in international dollars, adjusted for purchasing power 
parity. 
4 See the official website of Met Office Hadley Centre for Climate Science and Services: 
https://www.metoffice.gov.uk/weather/climate/met-office-hadley-centre/index. 

https://globalcarbonbudget.org/archive/
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period from 1965 to 2022. Data processing involves calculating per capita 
measures using reliable population figures, addressing missing data with 
imputation, and aggregating national data to hemispheric and global levels 
using standard methods. 

Coverage differs markedly across sources (e.g., high historical sparsity for 
inequality and HDI vs. near-full coverage for emissions and energy). We 
quantify missingness and then address internal gaps using an iterative 
machine-learning imputation (IterativeImputer with a Random Forest 
regressor, 500 estimators, max_iter = 10), fitted at the country level and 

leveraging all available series (temperature, energy, CO₂, land-use CO₂, 
Gini, Palma, and sectoral pollutants NH₃/ BC/ CO/ CH₄/ NOₓ/ N₂O/ 
NMVOC/ OC) plus calendar time (see Table 2). Terminal gaps and long 
data voids are left missing and excluded from the econometric estimations. 

Table 2. Missing-Data Audit and Imputation Summary (Country Level, Then 
Aggregated by Hemisphere) 

Variable N 
observed 

N 
missing 

Percent
age 
missing 

N 
count
ries 

N 
years 

Years 
covered 

hdi::World regions 
according to Our 
World in Data 

54,144 53,873 100 314 235 1710–
2023 

hdi::HDI 54,144 47,680 88 314 235 1710–
2023 

hdi::GDP per capita, 
PPP (constant 2021 
international dollars) 

54,144 47,081 87 314 235 1710–
2023 

Gini coefficient 9,710 5,176 53 255 118 1820–
2022 

Palma ratio 9,710 3,182 33 255 118 1820–
2022 

hdi::Population 
(historical) 

54,144 652 1 314 235 1710–
2023 

CO2 emissions 26,182 0 0 231 229 1710–
2023 

CO2 emissions from 
land use 

36,434 0 0 211 174 1850–
2023 

Energy use per 
person 

10,694 0 0 236 59 1965–
2023 

Per-capita GHG 
emissions 

35,813 0 0 209 174 1850–
2023 

Source: Authors’ analysis 
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After the imputation, we compute hemisphere aggregates as population-
weighted averages of country values; for per-capita variables, we weight by 
country populations, and for inequality indices, we apply the same weights. 
Countries intersecting the equator are not split; they are assigned to the 
hemisphere containing most of their territory. The global series is 
constructed as the sum of the northern and southern series, ensuring 
consistent country coverage and year alignment. This sequence (impute → 
aggregate) improves the reliability of the hemisphere series relative to 
aggregating raw sparse data. 

This dataset, spanning nearly six decades and two large geographical 
systems (north/south), enables an integrated assessment of how income 
distribution relates to environmental outcomes over time. Figure 1 displays 
the time series for the six core variables at the global and hemispheric 
scales. 

We aggregate country series to the northern and southern hemispheres to 
operationalize the canonical north–south development framing. This 
partition is prompted by large, well-documented differences in industrial 
structure, energy intensity, technology diffusion, and policy capacity that 
map broadly onto the hemispheres and are central to our questions on 
inequality–emissions associations. A hemispheric lens is also geographically 
meaningful—countries share climatic regimes and land-use frontiers that 
shape both energy demand and land conversion pressures—while yielding 
non-overlapping, population-weighted aggregates whose sum equals the 
global series. Because income and population density correlate with 
emissions, we view geography as a parsimonious baseline that avoids mixing 
endogenous thresholds (e.g., income cutoffs) into the classification itself; 
nonetheless, income-based alternatives remain. 

This geographically coherent partition captures the broad structural 
asymmetries (industrial structure, energy intensity, technology diffusion, and 
regulatory capacity) central to our questions, although we acknowledge that 
aggregation can mask within-hemisphere heterogeneity. 
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Figure 1. Annual Series (1965–2022) for CO₂ Emissions per Capita (Tonnes CO₂ 

per Capita), CO₂ Emissions from Land-Use Change per Capita (Tonnes CO₂ per 
Capita), Primary Energy Consumption per Capita (kWh per Capita), Gini 
Coefficient (0–1), Palma Ratio (Top 10%/Bottom 40%), and Global Temperature 
Anomaly (°C, Relative to 1961–1990) for the Global, Northern Hemisphere, and 
Southern Hemisphere Scales 

 

 

Source: Authors’ analysis 
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3. EMPIRICAL ANALYSIS AND METHODS 

3.1. Variable Preparation 

For all three geographical aggregates—global (G), northern hemisphere (N), 
and southern hemisphere (S)—the annual series 1965−2022 are re-scaled to 
the unit interval with a min–max transformation. Let 

                                                       
                                            (1) 

Because the transformed origin represents the empirical minimum of every 
variable, a regression without intercept preserves the economically intuitive 
mapping “zero inputs → zero emissions”. We include the global 
temperature anomaly as an ancillary control to capture short-run climate 
variations affecting energy demand and land use. Because temperature is 
also an outcome of cumulative emissions, we do not assign a causal 
interpretation to its coefficient; all results are robust to excluding 
temperature. 

Countries straddling the equator are assigned to the hemisphere containing 
the majority of their landmass; sensitivity checks with alternative splits yield 
similar patterns. 

3.2. Stage I: Single–Equation Ordinary Least Squares 

For each region h, we estimate,  

                                                 

                                                
      (2) 

by ordinary least squares (OLS). Inference is based on HC1 
heteroskedasticity-consistent standard errors, where HC1 is White’s 
heteroskedasticity-robust variance estimator (Anselin 1988; White 1980) 
multiplied by the finite-sample correction n/(n − k), where n is the sample 
size and k the number of regressors. The adjustment improves the small-
sample coverage of confidence intervals while converging to White’s 
original HC0 as n → ∞. In this way, that coefficient tests remain valid even 
when σh

2 varies with t. Equation 2 yields preliminary slope estimates and 
residuals, which are later used to diagnose cross-equation dependence. The 
value 0 in the scaled version of the variables denotes the sample minimum, 
not a physical zero. We estimate models with and without an intercept. The 
main specification includes an intercept to allow for a baseline level of 
emissions, while the no-intercept version is reported as a robustness check 
that offers a weight-like interpretation of coefficients under min–max 
scaling. Conclusions are robust across both versions. Coefficients are 
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interpreted as conditional associations, not causal effects. Potential 
endogeneity (reverse causality, omitted variables) motivates our ECM/Δ 
checks to mitigate spurious correlation from common trends. 

3.3. Stage II: Seemingly Unrelated Regression 

Seemingly unrelated regression (SUR) is an econometric technique used 
when several regression equations—each with its own dependent and 
explanatory variables—share contemporaneously correlated error terms. 
Although the equations may appear independent, their disturbances are 
linked, and treating them as a system allows the estimator to exploit this 
cross-equation correlation. By estimating all equations jointly through 
feasible generalized least squares, SUR delivers parameter estimates that are 
asymptotically more efficient than those obtained from separate OLS 
regressions, especially when the contemporaneous error correlations are 
substantial and the sets of regressors differ across equations. 

Given the synchronized nature of global macro-shocks, the disturbance 

vectors εt = (εGt,εNt,εSt)⊤ are unlikely to be contemporaneously independent. 
Zellner’s (1962) SUR framework explicitly models that correlation and 
delivers feasible generalized least squares (FGLS) estimates that are 
asymptotically more efficient than equation-by-equation OLS. 

System representation. Stacking the T observations for each region 
produces 

                                   

where Xh is the T × 3 matrix of regressors in Equation 2. 

                                                       
   

 
   

 
  

 
  

Assuming Cov(εt) = Σ, constant across t, the covariance of the stacked 

errors is Ω = Σ ⊗ IT. 

FGLS estimator. Let                 
  

   , where     are the OLS 
residuals from Stage I. The FGLS estimator is 

                                            ⊗     (3) 

which can be iterated once for convergence (iterative FGLS). The estimator 
is unbiased and, under standard regularity conditions, asymptotically 
efficient among the class of linear unbiased estimators when Σ is not 
diagonal. 

Inference and cross-equation restrictions. Robust covariance estimates for 

      follow directly from Equation 3. Wald statistics test linear hypotheses 
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such as H0: β1N = β1S (equal Gini elasticities between hemispheres) or the 
joint null H0: Σ is diagonal. 

Interpretation of coefficients. Because every regressor varies from 0 to 1, 
each slope βjh represents the change in scaled emissions associated with a 
full-range swing in the corresponding predictor ceteris paribus. Comparisons 
of βjh across h therefore quantify how the inequality–emissions and energy–
emissions associations differ between the northern and southern 
hemispheres and in the global aggregate. 

Advantages of the two-stage approach. Estimating Equation 2 separately 
provides diagnostics and a baseline that is familiar to readers; transitioning 
to Equation 3 captures the efficiency gains from the empirically large 
(σGN,σGS,σNS) covariances documented in Section 4. The combination yields 
transparent, easily interpretable coefficients while addressing both 
heteroskedasticity and cross-equation dependence; it thus satisfies the 
econometric requirements for policy-relevant inference on the role of 
inequality and energy use in determining per-capita land-use CO2 emissions. 

Assessing non-stationarity and long-run co-movement. Because many series 
trend over 1965–2022, we first test for unit roots using the ADF and KPSS 
tests. The ADF test’s null is a unit root (non-stationary); rejection indicates 
stationarity after controlling for low-order auto-regression. The KPSS test’s 
null is the opposite—level (or trend) stationarity—so rejection there signals 
non-stationarity. We run both in levels and in first differences for each 

series (CO₂ per capita, energy per capita, and the chosen inequality metric), 
using Schwarz/Bayesian information criterion to select lags and including a 
constant (and a deterministic trend where visual inspection warrants it). 
Convergence warnings in the KPSS test are handled conservatively 
(reporting p ≥ 0.10 when the statistic falls outside the tabulated ranges). 
Evidence of ADF non-rejection in levels combined with KPSS rejection, 
alongside ADF rejection and KPSS non-rejection in first differences, is 
interpreted as I(1) behaviour, meaning that the series is integrated of order 
one (it contains a unit root and becomes stationary after first differencing). 

To test for long-run equilibria among the key variables, we apply two 
complementary co-integration procedures. (1) The Johansen trace test 
(vector error correction framework) jointly evaluates the co-integration rank 
among emissions, energy, and inequality while allowing for short-run 
dynamics; we report the trace statistics and 5% critical values under a 
restricted constant in the co-integrating relations. (2) The Engle–Granger 
two-step test estimates a levels regression and then tests the residuals for 
stationarity (ADF test on residuals), where rejection implies co-integration. 
When co-integration is present, we estimate a single-equation ECM in first 
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differences with the lagged error correction term; otherwise, we use first-
difference regressions. All the regressions use heteroskedasticity- and 
autocorrelation-consistent (Newey–West) standard errors, and the variables 
are linearly re-scaled to [0,1] for comparability. 

 

4. RESULTS 

This study provides associational evidence at high levels of aggregation 
(global, northern hemisphere, and southern hemisphere). As such, the 
results may mask within-hemisphere heterogeneity and country-specific or 
sub-national dynamics. Despite our checks for non-stationarity and co-
integration, our regressions remain correlational and do not establish causal 
effects; coefficients should be read as conditional associations. Potential 
limitations include measurement error across sources and the use of single 
national proxies for inequality (Gini/Palma), which may not capture all the 
distributional nuances. Before turning to coefficients, note that temperature 
anomaly is included solely as an ancillary control for short-run climatic 
variation in energy demand and land use. Given its simultaneity with 
cumulative emissions, we do not assign a causal interpretation to its 
coefficient; all the results are robust to excluding temperature. Our 
hemisphere assignment for equatorial countries follows the “majority-
landmass” rule and population-weighted aggregation; although these 
choices are standard, they can affect levels and timing. 

Our hemispheric design emphasizes geography-linked structural 
asymmetries consistent with a North–south perspective. Alternative macro-
regional splits (e.g., the International Monetary Fund’s [IMF] advanced vs. 
emerging economies, World Bank income groups, or OECD vs. non-
OECD countries) are complementary lenses that organize countries by 
income and policy regimes rather than by geography. Because income is 
itself a key covariate in emission dynamics, income-based partitions risk 
conditioning on an outcome-related criterion; we therefore keep 
hemispheres as the main specification and view income-based groupings as 
a robustness lens for future extensions of this study. 

We first verify that the long time span does not drive spurious fits. Standard 
unit-root tests (ADF and KPSS) indicate that emissions, energy use, and the 
inequality metric behave as I(1) processes in the global, northern, and 
southern aggregates. We then test for long-run co-movement using the 
Johansen and Engle–Granger procedures and find evidence of co-
integration among the three variables; this justifies estimating ECMs rather 
than relying only on levels. For global, north, and south, the core series 
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behave as I(1) (e.g., global ADF levels: CO₂ per capita p = 0.324, energy per 
capita p = 0.400, Palma p = 0.306; ADF in first differences: p ≤ 1.9 × 10−4; 
KPSS in first differences: p ≥ 0.10). The Johansen test indicates rank = 1 
for global (trace = 129 > 107) and north (117 > 107) and rank = 2 for 
south (128 > 107, 83.6 > 79.3). The Engle–Granger test confirms co-
integration for global (p = 1.3 × 10−4) and south (p = 0.007). We therefore 
estimate ECMs; the error correction coefficients are negative and significant 

(global ϕ =−0.612, north ϕ = −0.587, south ϕ =−0.132), implying annual 
speeds of adjustment of 61%, 59%, and 13%, respectively (half-lives ≈ 0.73, 
0.78, and 4.91 years, respectively). First-difference specifications have 
substantially lower explanatory power (R2 ≤ 0.043), indicating that the high 
R2 in levels partly derives from common trends, while ECMs document a 
stable long-run relation (see Tables 3 and 4). These diagnostics support I(1) 
behaviour with co-integration among emissions, energy, and inequality, 
justifying ECM specifications and mitigating concerns that the high R² in 
levels could be driven by common trends alone. 

Table 3. Unit-Root Test Applied to Individual Datasets in This Study 

Aggregate 
Time-series 
variable 

ADF_ 
level_p 

KPSS_ 
level_p 

ADF_diff_p KPSS_diff_p 

Northern 

CO2 emissions  0.021 0.100 3.43 × 10-9 0.100 

Energy use per 
person 

0.273 0.100 1.96 × 10-6 0.100 

Palma ratio 0.922 0.001 2.32 × 10-12 0.100 

HDI 0.984 0.001 0.06 0.018 

Temperature 
anomaly 

0.995 0.001 0.000 0.100 

Southern 

CO2 0.002 0.001 7.08 × 10-10 0.023 

Energy use per 
person 

0.519 0.100 0.000 0.100 

Palma ratio 0.599 0.001 7.75 × 10-6 0.100 

HDI 0.045 0.001 0.233 0.048 

Temperature 
anomaly 

0.664 0.001 5.80 × 10-5 0.100 

Global 

CO2 0.324 0.022 3.10 × 10-10 0.100 

Energy use per 
person 

0.400 0.100 0.000 0.100 

Palma ratio 0.306 0.001 1.19 × 10-15 0.100 

HDI 0.989 0.001 0.025 0.017 

Temperature 
anomaly 

0.987 0.001 0.000 0.100 

Source: Authors’ analysis 
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Table 4. Engle–Granger, Johansen, and ECM Tests Applied to Individual Datasets 
in This Study CV5 denotes the 5% critical value of the corresponding trace statistic. 

Test Characteristic Northern 
hemisphere 

Southern 
hemisphere 

Global 

Johansen Trace r0 117 128 129 
CV5 r0 107 107 107 
Trace r1 73.8 83.6 77.9 
CV5 r1 79.3 79.3 79.3 

Rank  1 True True True 

Rank  2 False True False 

Engle–
Granger 

p 0.0632 0.0071 0.0001 

ECM ϕECM –0.587 –0.132 –0.612 

 tECM –2.77 –3.31 –3.34 
 pECM 0.0056 0.00009 0.0008 
 Speed (adjusted) 0.587 0.132 0.612 
 Half-life years 0.784 4.91 0.733 
 R2

EMC 0.36 0.146 0.34 

Note: CV5 denotes the 5% critical value of the corresponding trace statistic. 
Source: Authors’ analysis 

4.1. Correlation Analysis and Economic Implications 

Analysing the correlation matrices (Figure 2) reveals distinct patterns across 
regions. In the northern hemisphere, temperature anomaly strongly 
correlates with the Gini coefficient (0.645) and Palma ratio (0.752), 
indicating that higher inequality aligns with greater temperature deviations. 
It also shows a strong negative correlation with CO2 emissions from land-
use change (–0.753), while its association with global CO2 emissions (–
0.261) and energy consumption (0.162) is weaker. The strong correlations 
between inequality measures and temperature anomalies suggest that higher 
income disparity may drive consumption patterns that exacerbate climate 
variability, as wealthier segments of society typically engage in energy-
intensive consumption, leading to increased emissions. 

In the southern hemisphere, temperature anomaly is positively correlated 
with inequality measures—though the correlations are slightly lower than in 
the north (Gini: 0.586, Palma: 0.562). Notably, temperature anomaly has a 
moderate positive correlation with global CO2 emissions (0.578) and a 
strong negative correlation with land-use change emissions (–0.557). Energy 
consumption shows a negligible correlation with temperature anomaly in 
this region. The moderate positive association between temperature 
anomaly and global CO2 emissions in the south implies a more direct 
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emission–climate connection, potentially due to different industrial or land-
use practices from the north. 

Globally, temperature anomaly correlates strongly with the Gini coefficient 
(0.721) and moderately with the Palma ratio (0.584), reinforcing the link 
between inequality and climate change. It is negatively correlated with CO2 

emissions from land-use change (–0.740) and shows modest associations 
with global emissions (–0.336) and energy consumption (0.124). The 
observed global patterns underscore that rising inequality is consistently 
associated with higher temperature anomalies, but the nature and strength 
of these relationships vary by region (Dang, Hallegatte, and Trinh 2024; 
Huynh and Phan 2024; Paglialunga, Coveri, and Zanfei 2022). 

4.2. Regional Differences and Policy Insights 

The northern hemisphere exhibits the strongest associations between 
inequality and temperature anomaly, highlighting the potential for socio-
economic factors to influence environmental outcomes in industrialized 
regions. The strong negative relationship across both hemispheres between 
temperature anomaly and CO2 emissions from land-use change may reflect 
periods of effective carbon sequestration or reduced deforestation, 
coinciding with warming trends. These findings suggest that addressing 
income inequality could contribute to mitigating climate variability; regional 
policies should consider local economic and environmental contexts to 
effectively tackle both socio-economic disparities and climate change 
(Dwarkasing 2023; Silva, Matyas, and Cunguara 2015). 

4.3. Region-Specific OLS Results 

Annual time-series regressions were estimated separately for each 
hemisphere and for the global aggregate to gauge the marginal 
contributions of income distribution and energy use to CO2 emissions. All 
the variables are entered in the min–max scaleand the regressions are 
estimated without an intercept; heteroskedasticity-consistent (HC1) 
standard errors accompany every coefficient. Table 5 gives the full set of 
estimates. The temperature anomaly behaves as a small ancillary control—
insignificant in the north and modest in the global and south scales—while 
the core conclusions hinge on energy use and inequality. 
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Figure 2. Heat Map of Correlation Matrices for Key Variables across the Northern Hemisphere, Southern Hemisphere, and Global Scales.  

 

Note: Warmer colours indicate stronger positive correlations while cooler colours represent stronger negative correlations between 
temperature anomalies, inequality measures, CO2 emissions, and energy consumption. 
Source: Authors’ analysis. 
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Table 5. Regression Results for Six OLS Models Predicting CO2 Emissions (Global and from Land-Use Change) across the Northern 
Hemisphere, Southern Hemisphere, and Global Scales 

Independent 
variable 

Scale Dependent variable 
Coefficie
nt 

Standard 
error 

t value p > |t| R2 

Akaike 
information 
criterion 
(AIC) 

Bayesian 
information 
criterion 
(BIC) 

Global CO2 
emissions 

Northern 
hemisphere 

Temperature 
anomaly 

0.281 0.223 1.248 0.217 0.791 –36.40 –26.10 

Gini coefficient 0.159 0.273 0.582 0.563 

Palma ratio 0.229 0.278 0.825 0.413 

HDI –0.577 0.150 –3.838 0.000 

Energy consumption 0.874 0.132 6.613 0.000 

Southern 
hemisphere 

Temperature 
anomaly 

1.056 0.162 6.541 0.000 0.958 –37.60 –27.30 

Gini coefficient 0.732 0.253 2.896 0.005 

Palma ratio –0.515 0.234 –2.201 0.032 

HDI –0.358 0.112 –3.207 0.002 

Energy consumption 0.464 0.090 5.149 0.000 

Global 

Temperature 
anomaly 

–0.690 0.335 –2.064 0.044 0.725 3.98 14.28 

Gini coefficient 0.214 0.457 0.459 0.641 

Palma ratio 0.361 0.320 1.131 0.263 

HDI –0.110 0.230 –0.479 0.634 

Energy consumption 1.236 0.154 8.038 0.000 
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Note: The table presents coefficients, standard errors, t values, p values, R2, AIC, and BIC for models including the Gini 
coefficient, the Palma ratio, the HDI, and energy consumption as predictors. 

Source: Authors’ analysis 

 

CO2 
emissions 
from land use 

Northern 
hemisphere 

Temperature 
anomaly 

0.021 0.439 0.049 0.961 0.604 41.13 51.43 

Gini coefficient 1.701 0.532 3.196 0.002 

Palma ratio –0.476 0.531 –0.881 0.383 

HDI –1.071 0.294 –3.652 0.001 

Energy consumption 0.936 0.258 3.630 0.001 

Southern 
hemisphere 

- –0.066 0.231 –0.288 0.775 0.788 3.72 14.03 

Gini coefficient 1.194 0.361 3.307 0.002 

Palma ratio –0.886 0.334 –2.652 0.011 

HDI –0.417 0.159 –2.620 0.011 

Energy consumption 1.210 0.129 9.390 0.000 

Global 

Temperature 
anomaly 

–0.987 0.378 –2.612 0.012 0.718 18.08 28.38 

Gini coefficient 1.691 0.516 3.277 0.002 

Palma ratio –0.199 0.361 –0.553 0.583 

HDI –0.615 0.260 –2.368 0.022 

Energy consumption 1.004 0.174 5.785 0.000 
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Global CO2 emissions. For the northern hemisphere, per-capita primary-
energy consumption is the dominant covariate (β = 0.874, p < 0.001). HDI 
is negative and significant (β = −0.577, p < 0.001). Gini and Palma are not 
significant (p = 0.563 and 0.413, respectively), and temperature anomaly is 
also not significant (p = 0.217). Model fit is high (R² = 0.791). For the 
southern hemisphere, all the blocks contribute, and the model fit is very 
high (R² = 0.958). Energy per capita is positive (β = 0.464, p < 0.001). For 
inequality, Gini is positive and significant (β = 0.732, p = 0.006), while 
Palma is negative and significant (β = −0.515, p = 0.032), indicating that 
overall dispersion and top-tail concentration capture distinct facets of the 
income distribution. HDI is negative (β = −0.358, p = 0.002), and 
temperature anomaly is positive (β = 1.056, p < 0.001). At the global level, 
energy per capita is the most robust predictor (β = 1.236, p < 0.001). Gini, 
Palma, and HDI are not significant (p = 0.641, 0.263, and 0.634, 
respectively), while temperature anomaly is small and marginal (β = −0.690, 
p = 0.044). The model explains R² = 0.725 of the annual variation. 

CO2 emissions from land-use change. For the northern hemisphere, energy 
per capita is the strongest driver (β = 0.936, p < 0.001). Gini is positive and 
significant (β = 1.701, p = 0.002), while Palma is not significant (p = 0.383). 
HDI is negative (β = −1.071, p = 0.001), and temperature anomaly is 
insignificant. The model explains R² = 0.604 of the variation, indicating that 
overall dispersion in incomes (Gini) relates to land-use emissions in the 
north whereas top-tail concentration (Palma) does not. For the southern 
hemisphere, the association is tighter (R² = 0.788). Energy is again strongly 
positive (β = 1.210, p < 0.001). Gini is positive and significant (β = 1.194, p 
= 0.002), and Palma is negative and significant (β = −0.886, p = 0.011), 
suggesting that overall inequality and top-end concentration affect land-use 
emissions through different channels (cf. Barbier 2008; Ceddia et al. 2014). 
HDI is negative (β = −0.417, p = 0.011), and temperature anomaly is not 
significant. At the global level, energy is once more the central predictor (β 
= 1.004, p < 0.001). Gini is positive and significant (β = 1.691, p = 0.002), 
while Palma is not significant (p = 0.583). HDI is negative (β = −0.615, p = 
0.022), and temperature anomaly is negative and significant (β = −0.987, p 
= 0.012). Overall fit is high (R² = 0.718)—mirroring the hemispheric 
pattern in which energy and overall inequality (Gini) matter systemically—
whereas Palma contributes only in the south. 

Before turning to mechanisms, note that our OLS specifications report Gini 
and Palma jointly. Their correlation is high in some aggregates (especially 
the south) but not uniformly so, and the coefficients are sufficiently stable 
for inference in the pooled display. Still, to guard against multi-collinearity, 
we also re-estimate single-metric models (Gini only/Palma only) and obtain 
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the same qualitative conclusions; hence, the joint tables are meant to 
provide transparency rather than depending on a particular pairing. 

Energy use is the most pervasive and quantitatively important determinant 

of CO₂ emissions—both for total emissions and for the land-use 
component—across all scales. This underscores the central role of energy 
systems in mitigation: Shifting away from carbon-intensive fuels and 
improving efficiency are the most immediate pathways to reducing per-
capita emissions, even when other fundamentals remain unchanged (Le 
Quéré et al. 2019). 

The influence of income distribution is clearly asymmetric across 
hemispheres. In the South, higher overall inequality (Gini) is positively 
associated with both aggregate and land-use emissions, whereas, holding the 
Gini coefficient constant, the Palma ratio is negatively associated with 
emissions. A plausible interpretation is that avoiding further increases 
in top-end income concentration—that is, keeping the Palma ratio relatively 
low—coincides with weaker pressures for land conversion. This pattern is 
apparent in settings where broader coalitions or redistributive institutions 
demand stronger environmental safeguards. In contrast, in the north, 
neither overall inequality nor top-tail concentration shows a statistically 
detectable effect once energy use is controlled for; this is consistent with 
the context of mature, capital- and technology-intensive economies, which 
rely less on land-extensive production (Parks and Roberts 2008). 

At the global level, these effects are largely offset because the correlations 
for each hemisphere differ in both sign and magnitude. This heterogeneity 
calls for geographically differentiated policy: redistribution programmes to 
curb extreme income dispersion may be particularly effective at reducing 
emissions related to land-use change in the south, while energy system 
transformations (efficiency and fuel substitution) are universally beneficial. 

4.4. Linking Mechanisms to Real-World Contexts 

In the southern hemisphere, commodity exports have often grown through 
land-extensive production under conditions of unequal asset structures and 
uneven access to finance. In the Brazilian Amazon, tightening rural credit to 
environmentally risky borrowers causally reduced deforestation, illustrating 
how distributional access to finance and enforcement of environmental 
policy interact with land-use outcomes (Assunção et al. 2020). Enforcement 
capacity itself matters: Satellite-driven DETER monitoring and related 
enforcement constraints explain the variation in clearing (Merkus 2024). 
Beyond Brazil, comparative evidence highlights weak governance as a 
persistent underlying factor in forest loss across Sub-Saharan Africa; where 
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regulatory capacity is limited, the pressure to reduce deforestation is 
amplified (Nansikombi et al. 2020). 

In the northern hemisphere, the limited incremental role of inequality—
once energy use is controlled for—accords with evidence of declines in 

structural CO₂ in advanced economies since 2007 due to efficiency 
improvements, fuel switching/cleaner power, and binding policy regimes 
(e.g., carbon pricing) (D’Arcangelo et al. 2022; IEA 2024). Cross-country 
estimates suggest that a €10 increase in effective carbon prices is associated 

with an approximately 3.7% long-run reduction in CO₂ emissions from 
fossil fuels (D’Arcangelo et al., 2022). 

Taken together, the six region-specific OLS regressions indicate that (1) 
carbon intensity and scale of energy use are the principal channels driving 
emissions everywhere and (2) inequality modulates those channels in ways 
that depend on regional structures. In the next sub-section, we show that 
these results persist—with tighter standard errors—when the three 
equations are estimated jointly as an SUR system. 

4.5. System-wide SUR Estimates and Substantive Implications 

Table 6 summarizes the FGLS estimates obtained from the SUR systems 
for (1) per-capita CO2 emissions stemming from land-use change and (2) 
aggregate per-capita CO2 emissions. 

Because the unexplained shocks in the three equations are strongly 
correlated, estimating them jointly is more appropriate than running 
separate OLS regressions. Feasible GLS in the SUR framework raise the 

overall explanatory power to overall R² = 0.61 for land-use CO₂ per capita 

and 0.8815 for total CO₂ per capita, and reduce the standard errors. The 

residual-correlation matrix is informative. For land-use CO₂, disturbances 
in global–north move almost in lock-step (ρGN = 0.96), with strong 

correlations for global–south (0.87) and north–south (0.83). For total CO₂, 
ρGN = 0.92 is high, while the values for global–south and north–south are 
more moderate (0.33 and 0.45, respectively), indicating that common 
shocks are tighter for land-use processes than for fossil-fuel emissions. 

Temperature anomaly loads negatively in all land-use equations (global 
−0.8013*,†† north −0.7979*, south −0.3421*), which is consistent with 
abnormally warm years coinciding with slower clearing or net re-growth. 

For total CO₂, the value is small and negative at the global level (−0.4227*), 
is not retained for the north (jointly insignificant in the SUR system), and 

                                                      

5 The asterisk denotes significance. 
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turns positive in the south (0.9342*); this is consistent with heat- and 
drought-related shifts in energy use or land-use practices in the tropical 
belts (e.g., temporary reliance on diesel power, fire-based clearing). These 
contrasts support considering land and energy pathways separately when 
developing mitigation strategies for the tropics. 

Table 6. SUR Coefficients by Hemisphere and Emission Type 

 Land‐use CO2 (per capita) Total CO2 (per 
capita) 

 Global North South Global North South 

Temper-
ature 
anomaly 

–0.8013*** –0.7979*** –0.3421*** –0.4227*  0.9342*** 

Energy 
use (per 
capita) 

0.9412*** 0.9899*** 1.0267*** 1.1433*** 0.7607*** 0.4628*** 

Gini 0.7739***  0.8753***   0.8076*** 

Palma  0.9508*** –0.4413*  0.4694*** –0.5408*** 

R2
overall 0.61 0.88 

Residual correlations (Σb) 

Land use: GN = 0.96, GS = 0.87, NS = 0.83 

Total: GN = 0.92, GS = 0.33, NS = 0.45 

Note: The blank cells indicate the regressors excluded from the joint system to 
alleviate multi-collinearity (Gini vs. Palma) or because they were jointly insignificant 
in SUR. The asterisks denote significance in the SUR covariance structure at 1% 
(***), 5% (**), and 10% (*); the blank cells indicate p > 0.10. Robust HC1 standard 
errors underlie all the t statistics. The lower panel shows the contemporaneous 
correlation matrix Σb of the equation residuals. 

Source: Authors’ analysis 

Per-capita primary-energy use is uniformly positive and statistically decisive 
across all equations (land use: global 0.9412*, north 0.9899*, south 1.0267*; 
total: global 1.1433*, north 0.7607*, south 0.4628*); this corroborates the 
centrality of energy systems found in decomposition studies (Le Quéré et al. 
2019). Although the coefficients are numerically small due to our [0,1] 
scaling, their precision indicates that even marginal efficiency gains and fuel 
switching are associated with measurable per-capita emission reductions. 

Inequality exhibits a clear north–south asymmetry that persists under joint 

estimation. For land-use CO₂, Gini is positive and significant where 
included (global 0.7739*, south 0.8753*), while Palma is positive in the 

north (0.9508*) but negative in the south (−0.4413*). For total CO₂, Gini is 
positive in the south (0.8076*), whereas Palma is positive in the north 
(0.4694*) and negative in the south (−0.5408*). Taken together, overall 
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dispersion (Gini) is associated with higher emissions in the south, while 
top-tail concentration (Palma) contributes positively in the north and 
negatively in the south; this is consistent with different institutional and 
land-use channels. 

The SUR estimates confirm and sharpen the OLS patterns. Energy use per 
capita is the dominant correlate everywhere, but the magnitude and even 
the direction of the inequality associations hinge on geography and 
emission channel. The implications are threefold: 

Rapid decarbonization and electrification are universally beneficial; their 
impact is magnified where inequality is addressed. 

Redistribution or inclusive land governance may yield a double dividend in 
the south—curbing both fossil-fuel and land-use emissions—whereas in 
high-income northern economies, inequality policies alone are unlikely to 
deliver large short-run climate gains without energy system change. 

Models that aggregate hemispheres risk masking these asymmetric 
elasticities; region-differentiated policy design is therefore empirically 
warranted. 

 

5. CONCLUSIONS 

The seemingly unrelated regressions show three empirically grounded 
regularities. First, per-capita primary-energy consumption is the most stable 
predictor in the dataset. It enters with a positive and significant coefficient 
in every equation except the northern land-use regression, where the 
estimate is positive but not distinguishable from zero. This pattern confirms 
that energy use explains an important share of annual variation in both total 
CO2 emissions and the land-use component. 

Second, the two indicators of income distribution show that its effect on 
emissions depends on both hemisphere and emission channel. The Gini 
coefficient is positive and highly significant in all southern equations and in 
the global system, yet it is statistically irrelevant for northern fossil-fuel 
emissions. Conditional on that broad measure of inequality, the Palma ratio 
is significantly negative for land-use emissions in the south and at the global 
level, while it is insignificant elsewhere. These differences indicate that the 
link between inequality and emissions is not uniform but instead varies with 
regional context and with the source of emissions examined. 

Third, surface-temperature anomalies display contrasting signs across 
channels. Warmer-than-average years coincide with lower land-use 
emissions in all regions, whereas in the southern hemisphere they coincide 



[113] Tobón Ospino, Marbello-Peña and Sierra-Porta 

with higher fossil-fuel emissions. The sign reversal suggests that warming 
affects emission pathways differently across regions. 

Estimating the three equations jointly is statistically warranted. 
Contemporaneous residual correlations range from 0.20 to 0.85, and the 
SUR framework raises the overall goodness of fit to 0.61 for land-use 
emissions and 0.88 for total emissions while reducing standard errors 
relative to separate OLS. Each of these conclusions is directly supported by 
the coefficient estimates and diagnostic statistics reported in Sections 4.3 
and 4.4. 

 

6. POLICY IMPLICATIONS AND DIRECTIONS FOR FUTURE 
RESEARCH 

The empirical evidence points to a clear priority. Because per-capita energy 
use stands out as the most consistent and quantitatively important driver of 
both total and land-use CO2 emissions, policies that help lower the carbon 
intensity of energy consumption—through efficiency gains, electrification 
from low-carbon sources, or both—are likely to yield the most immediate 
mitigation benefits. At the same time, the results reveal that income 
inequality modulates emissions in region-specific ways. The broader overall 
dispersion of incomes increases emissions in the southern hemisphere and, 
by extension, in the global aggregate, whereas inequality plays a limited role 
in the northern fossil fuel equation. These findings imply that mitigation 
strategies should be geographically differentiated. Energy system reforms 
are essential everywhere, but in regions where inequality significantly 
augments emissions—most notably the south—complementary measures 
to narrow income distribution gaps and reform land governance can 
reinforce the emission reduction strategies of energy policies. 

Several avenues for further work emerge directly from the present results. 
First, the analysis is static and linear; extending it to dynamic specifications 
such as panel error correction models would clarify how quickly emissions 
adjust to energy-use, inequality, and temperature shocks and would help 
disentangle short-run fluctuations from long-run equilibria. Investigating 
possible endogeneity—for instance, via instrumental-variable SUR or 
dynamic panel methods—could refine causal interpretation, especially for 
the ( coefficients. Second, the dataset aggregates emissions and energy use 
at the hemispheric scale. Future research could disaggregate by sector or by 
finer geographic units to examine whether the inequality–emissions nexus 
observed in the south is driven by particular industries (e.g., agricultural vs. 
extractive sectors) or by specific countries within the hemisphere. 
Incorporating institutional variables—such as land tenure security, 
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environmental governance indices, or renewable energy adoption rates—
would further illuminate the mechanisms behind the regional asymmetries 
documented here. 

Taken together, these extensions would move the evidence base beyond 
correlation towards a richer understanding of the causal pathways linking 
energy systems, economic distribution, and carbon outcomes, thereby 
providing stakeholders with more precise input for designing region-
appropriate climate policies. 

Future research could leverage country- or sub-national panel designs with 
policy shocks or plausibly exogenous instrumental variables—variables that 
shift income distribution or carbon pricing but are otherwise unrelated to 
emissions, conditional on controls—incorporate spatial dependence, and 
examine distribution-sensitive measures of inequality (Kopp, Thomas, and 
Markus Nabernegg, 2022) and sectoral emissions to unpack the 
mechanisms we document here. 

The results are associational and reported at high levels of aggregation 
(global/north/south), which may conceal country- or sector-specific 
dynamics and raises the usual ecological-fallacy caveat. We therefore 
interpret coefficients as conditional associations and explicitly address non-
stationarity (ADF/KPSS) and long-run co-movement (Johansen/Engle–
Granger, ECMs), using SUR to exploit cross-equation covariance. A 
country panel design with sectoral detail and identification strategies is a 
natural extension of this study. As a robustness lens for future work, 
regrouping countries by income or policy regime (e.g., World Bank/IMF 
classifications) and estimating panel ECMs with spatial dependence could 
uncover the heterogeneity that our hemispheric aggregates necessarily 
suppress. 
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